
Copyright © 2012 The Apache Software Foundation. All rights reserved.

Apache Avro# 1.10.0 Documentation

Table of contents

1 Introduction........................................................................................................................ 2

2 Schemas.............................................................................................................................. 2

3 Comparison with other systems.........................................................................................2



Apache Avro# 1.10.0 Documentation

Page 2Copyright © 2012 The Apache Software Foundation. All rights reserved.

1 Introduction

Apache Avro# is a data serialization system.

Avro provides:

• Rich data structures.
• A compact, fast, binary data format.
• A container file, to store persistent data.
• Remote procedure call (RPC).
• Simple integration with dynamic languages. Code generation is not required to read or

write data files nor to use or implement RPC protocols. Code generation as an optional
optimization, only worth implementing for statically typed languages.

2 Schemas

Avro relies on schemas. When Avro data is read, the schema used when writing it is
always present. This permits each datum to be written with no per-value overheads, making
serialization both fast and small. This also facilitates use with dynamic, scripting languages,
since data, together with its schema, is fully self-describing.

When Avro data is stored in a file, its schema is stored with it, so that files may be processed
later by any program. If the program reading the data expects a different schema this can be
easily resolved, since both schemas are present.

When Avro is used in RPC, the client and server exchange schemas in the connection
handshake. (This can be optimized so that, for most calls, no schemas are actually
transmitted.) Since both client and server both have the other's full schema, correspondence
between same named fields, missing fields, extra fields, etc. can all be easily resolved.

Avro schemas are defined with JSON . This facilitates implementation in languages that
already have JSON libraries.

3 Comparison with other systems

Avro provides functionality similar to systems such as Thrift, Protocol Buffers, etc. Avro
differs from these systems in the following fundamental aspects.

• Dynamic typing: Avro does not require that code be generated. Data is always
accompanied by a schema that permits full processing of that data without code
generation, static datatypes, etc. This facilitates construction of generic data-processing
systems and languages.

• Untagged data: Since the schema is present when data is read, considerably less type
information need be encoded with data, resulting in smaller serialization size.

https://www.json.org/
https://thrift.apache.org/
https://code.google.com/p/protobuf/


Apache Avro# 1.10.0 Documentation

Page 3Copyright © 2012 The Apache Software Foundation. All rights reserved.

• No manually-assigned field IDs: When a schema changes, both the old and new schema
are always present when processing data, so differences may be resolved symbolically,
using field names.

Apache Avro, Avro, Apache, and the Avro and Apache logos are trademarks of The Apache
Software Foundation.


	Table of contents
	1 Introduction
	2 Schemas
	3 Comparison with other systems

